|
下载地址
* N4 P& D; h Uhttp://202.116.65.193/ncourse/gs1/gs01.csf0 V- `; k+ X8 _! S! S
....................................% g$ j) M5 A, j3 C P' x5 M5 ^
http://202.116.65.193/ncourse/gs1/16.csf \3 c9 e" ~0 F2 M3 E3 D- E
http://202.116.65.193/ncourse/gs1/gs17-18.csf1 u- @* i* g( \, T
........................................3 [# r) T$ d4 ?$ s |
http://202.116.65.193/ncourse/gs1/gs19.csf
; m% S4 c$ w6 @1 |: U a..............................................4 h+ ^4 g) D4 m9 S
http://202.116.65.193/ncourse/gs1/gs79.csf: ^2 S$ K& V9 A
适用对象------:大学新生,没有学过高等数学的学生.数学基础相对比较差的同学5 [9 Y- @) {. y1 A! O7 u
0 d5 V2 S$ `5 {另外:这个系列的讲座还有另外的辅导讲座.地址为:http://202.116.65.193/ncourse/gs1/index_fd.htm
( R; G; ~& h3 O2 z# T: `: S' n 一共有4讲...在美河里面好象没有...一并发给大家...8 T9 v1 u: _( v* j0 P" c
# E3 I% z( n) K: }" V1 W& t6 f
我的点评:1.该格式是CSF的格式.所以说.里面讲的资料和讲课的老师是一体的...很形象.. c+ \6 e n/ @! y2 j* i' t4 \
2.该资料比较基础.比较简单.很适合入门的同学.比如一共79讲(注意:它的17 和18讲在一起,合并为一集,)讲到第10讲的时候才讲到函数的极限......基本上来说的.在高等数学中,函数的极限一般在第一章的前几节就早讲完了.(在高数的开始,前面就只有集合 和数列的极限,然后就到了函数的极限了,基本上讲到函数的极限一般在5讲左右就可以讲到了)可是它就讲个 集合 和数列的极限就花了10讲.当初我还担心这79讲能不能把高数讲完..很是诧异..但是这就是这个教材的优点.它很注意前期的基础讲解.对一些抽象的概念反复讲解,加强学生对概念的理解.. z2 C- V: Z6 Z- j! a
3.该资料详略得当,详细的地方讲的很是细,该略的地方一笔带过.连贯性很强.注意侧重点和考点的融合.使学生在学完本课程后.对一些常用的考点和知识点有很深的印象.7 J% z/ q: T1 M+ S3 {
4.老师讲的互动性很强,常常讲到知识点的时候,反复的论证,推理,和发问.使学生能较好的学会知识.普通话还算可以,除了把邻域常常说成论语之外.还可以了.画面很清晰.
$ g2 A1 }0 g$ u1 g. n8 t 5.该讲座在一系列高数讲座中,其知识点的难度应该中等左右,如果是数学系的同学,或者其它书数学要求比较高的系中的同学.建议不要看.因为讲的全是基本的知识点.甚至还有同学会觉得比较罗嗦.但是非常适合没有学过<高等数学>的人.推荐指数----5星.对一些学高数不牢固,或者准备考研究生考304数学四的人,推荐指数---4星 ]$ J2 f8 S" V% W3 ]3 n% x
9 z. A6 U) \2 `
9 _3 C! }6 g8 Q
中山大学的线性代数还是讲得不错的,高数应当也还可以,谢谢您的参与,祝您新年快乐
% g7 t9 `: T7 U. l" V% d" e[ 本帖最后由 鬓微霜 于 2007-2-23 19:01 编辑 ] |
|