|
欢迎光临丁云龙老师教学网页
0 r# p G. [' R$ Jhttp://csm01.csu.edu.tw/0166/2007Ting/index.htm$ u2 \: |8 m @* f- E; |
1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学
H+ T1 }1 L1 u2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果1 t3 g1 k7 _& z7 A# @8 U' x
3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
1 I& L7 o) z# v5 o- u& T4. 限于人力、时间等因素,此教学网页暂不设置讨论区
4 s+ y: {- |3 @, M: Q- D
+ P2 ]* u6 r5 N0 Z) c- u6 zCHAPTER 1 LIMITS OF FUNCTIONS+ L- C# v$ I( }9 E) r3 A9 I3 H
Section 1-1 Limits
" h- |+ B3 b) j7 [Section 1-2 One-Sided Limit
0 k. g, ^6 S- V1 l: P8 DSection 1-3 Continuity
" }5 F" z& y5 ? FSection 1-4 A Limit at Infinity and Infinite Limit
5 w' j0 y# G2 h; B, p: n2 Q $ K. T# h: _/ X& g8 Y
CHAPTER 2 DERIVATIVE
9 r" @; g: Q; x/ `Section 2-1 Definition of Derivative
% _. L- U9 `& t' s6 t& u# aSection 2-2 The Rule of Differentiation# _8 W `: U% o$ J
Section 2-3 Chain Rule and Implicit Differentiation) q. V# G0 w' F0 ?& y1 r- U
Section 2-4 Derivatives of Exponential and Logarithmic F 5 M, `2 U8 t2 c- x! L) J
Section 2-5 Numerical Approximate –Differentials! [' H- r0 O r9 x3 R
Section 2-6 Derivatives of Trigonometric Functions1 J4 h0 s& }' B" s2 e1 V- L5 }/ u
Section 2-7 Derivatives of Inverse Trigonometric F4 k0 R/ O' c( t9 t
X! y0 {7 e+ {* m) G
CHAPTER 3 APPLICATIONS OF DERIVATIVES
! @ ]1 \. S6 wSection 3-1 The Mean Value Theorem and its Applications0 d. y# h9 x5 K3 A" W$ u/ s
Section 3-2 Increasing and Decreasing Functions
5 }! e0 H7 Y( [! wSection 3-3 Maximum and Minimum Values( \" z' Z* r5 |, _/ v# k8 O
Section 3-4 The Max -Min Problems) P6 Q/ |4 A3 U
Section 3-5 Concavity and Points of Inflection
) ^/ q: j4 x9 M0 C" s8 T" |Section 3-6 Asymptotes
& J1 {8 [' a& r6 u; LSection 3-7 Sketching curve6 G }; }4 M# K
Section 3-8 L' Hopital's Rule& [3 G, Y K( i8 U6 E6 i
Section 3-9 Taylor Series5 c1 u9 W+ `3 G* g' U. _& v2 D* o. W
Section 3-10 Applications In Marginal Analysis; j5 H$ t, Y S; q+ k! }
Section 3-11 Elasticity
+ }4 r1 N0 R( k0 Q- u
/ a! t, Q# i8 I* h: \( sCHAPTER 4 THE INDEFINITE INTEGRALS
- x: f! E- F( T) ySection 4-1 Antiderivative and The Indefinite Integrals
: p/ i# P' z/ w! JSection 4-2 Integration by Changing Variables
* O9 @( A& \# A4 H" pSection 4-3 Integration by Parts
/ h3 u- s( ?" c* rSection 4-4 The Trigonometric Integrals
) O9 C! v0 r. c& Y5 eSection 4-5 The Integration by Partial Fractions
- u) D. U0 x' R7 n7 L/ A* cSection 4-6 Trigonometric and Half-Angle Substitution6 d0 t0 J# ?1 o/ B9 y, x0 h
8 w9 ?# U1 R2 M, R$ |( ?- U- H/ |
CHAPTER 5 THE DEFINITE INTEGRALS% I( I6 T" _7 X2 j$ D/ v2 T
Section 5-1 Areas and the Definition of Definite Integral0 R5 R2 D. o3 _$ t( ]
Section 5-2 The Fundamental Theorem of Calculus
, [! e/ w S% V1 P7 h+ Y4 NSection 5-3 The Approximate Integration) }6 G% A! n) F" R) Q. Q: D
Section 5-4 The Improper Integrals 7 o# q' O+ G% x2 |4 B
; H; S& Y: ]3 j+ p6 e1 J# D6 F# {6 w
CHAPTER 6 APPLICATIONS OF INTEGRATION
3 b4 t2 A( E% M& u0 D! VSection 6-1 Areas between Curves' `+ ~3 ~+ |9 ~/ [* \% s
Section 6-2 Areas in Polar Coordinates4 U- x1 W* U, O) w, |, e$ U0 f
Section 6-3 Arc Length
' }. C8 @4 u8 W/ ]! c1 oSection 6-4 Volumes and The Volumes of Revolution/ S+ ]5 \. s2 u; f3 s
Section 6-5 Area of a Surface of Revolution
5 A7 c" L( V' U h: U; O/ ^Section 6-6 Centroid of A Plane Region) G c4 r5 a; L, ?3 E/ D6 p
Section 6-7 Work and The Problems of The Engineering
% r9 \% B, O+ E6 F# {
w. `$ m% K5 |% h1 qCHAPTER 7 PARTIAL DERIVATIVES
' q7 h$ O4 E0 y" P# D; S* I7 X& JSection 7-1 Limits and Continuity: _" t3 n4 u# Q" x7 u* u9 \# P
Section 7-2 Partial Derivatives g" X5 u3 p0 z
Section 7-3 The Differentials and Chain Rules
( `% r* I7 r7 s6 v; Y1 {6 }+ jSection 7-4 Extrema of Functions of Two Variables5 n6 s* [2 ^& p& b$ m
Section 7-5 Directional Derivatives, Gradient and Tangent Plane
5 D B4 ~* k* x+ T
! S0 P9 ]0 m( F6 Y' _CHAPTER 8 MULTIPLE INTEGRALS
) n8 H* G9 p& D8 z; x$ VSection 8-1 Integrals over a Rectangle. O% V$ v& ^* K& ^) L9 V' b9 ^
Section 8-2 Integrals over a Region
! E3 q# z$ w+ q4 ~( T* ^4 ^" ISection 8-3 Three-Dimensional Iterated Integrals" B% A5 J {/ j5 g7 ~
Section 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates! R7 E# b' g E" u: L
Section 8-5 Applications of Multiple Integrals
& o5 S& r6 S4 }9 L& `! `3 R |
|