|
欢迎光临丁云龙老师教学网页, b& v0 Q. e$ ~/ f) I2 p0 T# t# P) D
http://csm01.csu.edu.tw/0166/2007Ting/index.htm
+ m4 E1 g8 `" B* c I) m( k1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学4 k$ I, _0 F! L# F
2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果
3 S/ H4 L& Q/ ]. {3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
0 O% P4 w J4 B6 z7 @0 o5 E4. 限于人力、时间等因素,此教学网页暂不设置讨论区
}# G7 [- D8 _! O& P# R. s( J3 ?$ n, B$ Q" w1 m/ Y' K. T
CHAPTER 1 LIMITS OF FUNCTIONS$ |9 ^8 ?% p3 [; \0 B- ~. f7 H
Section 1-1 Limits
& v' D8 r4 c8 f/ m) I/ h2 F/ vSection 1-2 One-Sided Limit/ A# w9 ^! v; A
Section 1-3 Continuity1 j2 [7 L$ S: y9 Y7 u) r7 F) Q
Section 1-4 A Limit at Infinity and Infinite Limit
/ V" l( @* `: V0 w 4 u! H/ N9 n' O1 J* b8 T; b1 G
CHAPTER 2 DERIVATIVE* i F4 v. d4 a& S1 g
Section 2-1 Definition of Derivative
7 x3 g) w* a- |$ o* _Section 2-2 The Rule of Differentiation
]/ ]6 l# \0 j4 G; T7 S1 v rSection 2-3 Chain Rule and Implicit Differentiation$ l) K: d! W1 |$ U& B
Section 2-4 Derivatives of Exponential and Logarithmic F
+ P N0 N+ v' J2 ]& fSection 2-5 Numerical Approximate –Differentials4 |) x! x6 @+ @+ T' |7 ?0 b
Section 2-6 Derivatives of Trigonometric Functions
" S; Y7 D1 N! i) {Section 2-7 Derivatives of Inverse Trigonometric F6 a/ O: U; D( y S# f1 A" Y
" `& }1 o' ]! R' E" ^7 N
CHAPTER 3 APPLICATIONS OF DERIVATIVES
9 ?3 s3 X8 o W9 a( J* N/ }; U7 hSection 3-1 The Mean Value Theorem and its Applications
+ k0 I+ F. M+ O" oSection 3-2 Increasing and Decreasing Functions
0 d9 \/ D3 f) i/ H: r% Q( Y. JSection 3-3 Maximum and Minimum Values
& E( b# L# q, K* ISection 3-4 The Max -Min Problems
( w/ C, W( Q/ j: w" W. k& CSection 3-5 Concavity and Points of Inflection ! }1 L, @ o' L' ~- M9 D L) L0 O
Section 3-6 Asymptotes8 h5 p" Y4 P/ u' N& r: \/ l
Section 3-7 Sketching curve( P' w! x2 l1 o: T6 F: I
Section 3-8 L' Hopital's Rule
4 g$ c( a8 ]. z+ I+ u6 S0 ? ^% oSection 3-9 Taylor Series
) ^( q. C/ T C/ T7 ^: e! ESection 3-10 Applications In Marginal Analysis
5 O% P3 F2 w( r1 ]Section 3-11 Elasticity
' @3 w9 ]$ m) ?3 Q( t1 A* e 9 l" Q% k4 Y0 A8 s
CHAPTER 4 THE INDEFINITE INTEGRALS
0 _5 n& @- y. w7 iSection 4-1 Antiderivative and The Indefinite Integrals$ S/ E; C% v5 p/ Q1 y. d; [" V
Section 4-2 Integration by Changing Variables
) `" Y/ _4 @5 U# A8 kSection 4-3 Integration by Parts) Q; d6 ~6 Q% } l
Section 4-4 The Trigonometric Integrals: u) h4 U: W, m9 K* T
Section 4-5 The Integration by Partial Fractions+ e: b _' M/ F9 s( E( R' c5 o1 i
Section 4-6 Trigonometric and Half-Angle Substitution
# O: J$ X1 g+ ~- t8 R/ k3 ^
. ?% a8 @5 m, V) VCHAPTER 5 THE DEFINITE INTEGRALS
% u& s1 L u! nSection 5-1 Areas and the Definition of Definite Integral
7 q+ S8 B2 s, i+ z0 [) JSection 5-2 The Fundamental Theorem of Calculus7 b; S4 T! t+ G# e
Section 5-3 The Approximate Integration
0 }! a) [ }! G) n' W+ dSection 5-4 The Improper Integrals 0 j" n6 |3 n, ?9 _) a
6 x" N! _" y5 FCHAPTER 6 APPLICATIONS OF INTEGRATION
. S# T/ u9 @8 x( h: rSection 6-1 Areas between Curves0 R6 V: u: P$ `$ ?. G; q1 F
Section 6-2 Areas in Polar Coordinates6 F2 \& z5 \/ o% e
Section 6-3 Arc Length# ?5 c9 b+ L* L8 H
Section 6-4 Volumes and The Volumes of Revolution
# {) c, H/ `7 eSection 6-5 Area of a Surface of Revolution
& S( m$ I( }! }0 h6 Z6 o3 u" qSection 6-6 Centroid of A Plane Region# h2 ~8 d6 w3 \, X: z
Section 6-7 Work and The Problems of The Engineering5 Z0 w' V: D3 Z
T9 s& P4 i) ~5 M6 l9 d1 S cCHAPTER 7 PARTIAL DERIVATIVES3 F( M b( t. M$ G. V5 Y; P/ g
Section 7-1 Limits and Continuity2 H0 q; p, o+ |6 O' k$ p
Section 7-2 Partial Derivatives
4 C$ m0 R* u$ W; O( a& |+ @Section 7-3 The Differentials and Chain Rules$ D' j q2 X% Q4 [1 ~& C$ p
Section 7-4 Extrema of Functions of Two Variables Z3 n2 g" W! R. ]
Section 7-5 Directional Derivatives, Gradient and Tangent Plane
, H( u0 W" n' u " j. a; I2 ?0 d" ?
CHAPTER 8 MULTIPLE INTEGRALS
& \3 J% w: R8 ASection 8-1 Integrals over a Rectangle- }# [0 w/ S8 p# h2 e' Z2 U
Section 8-2 Integrals over a Region- u$ u. I) n$ W* r- B& O
Section 8-3 Three-Dimensional Iterated Integrals2 F0 m7 R/ S! \ s3 t
Section 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates
( N: }4 y, j7 {4 BSection 8-5 Applications of Multiple Integrals" S {: ?( U. E1 K# \ B( \. m* Z; G
|
|