|
欢迎光临丁云龙老师教学网页
( S, R; a& k+ }. mhttp://csm01.csu.edu.tw/0166/2007Ting/index.htm, _/ g4 `# A8 ~; B# X+ l0 ` l: a
1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学
) C' C8 F- d; V6 ~& U# I9 b2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果/ H# I$ ]6 ^: t) P4 g* b- J
3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
( \, w2 Z0 m, r* l4. 限于人力、时间等因素,此教学网页暂不设置讨论区
5 X$ q* y5 H6 R9 C1 Z# f* v5 b7 M9 a: Z6 ~; A7 c; k; j
CHAPTER 1 LIMITS OF FUNCTIONS
0 g* y2 E" z/ a5 u/ ESection 1-1 Limits
6 P/ U5 L3 c) w4 T; S9 jSection 1-2 One-Sided Limit
2 o5 p h( t. h; p$ wSection 1-3 Continuity
9 B3 {! C* L% n% G2 B) a, NSection 1-4 A Limit at Infinity and Infinite Limit
) \: H( w) j4 h* G" t
& q1 K, r' w R) X0 WCHAPTER 2 DERIVATIVE
& z2 s( \: d V, k4 x9 ^Section 2-1 Definition of Derivative
9 D) F' L+ D. l4 N9 QSection 2-2 The Rule of Differentiation, E7 d( E+ Q7 o
Section 2-3 Chain Rule and Implicit Differentiation! a/ }+ c2 E3 Q* c" d3 {; ?
Section 2-4 Derivatives of Exponential and Logarithmic F
" k& x- b1 L. r1 A& E) l4 KSection 2-5 Numerical Approximate –Differentials* Y- X2 g" j' X2 C' d+ y+ W# f
Section 2-6 Derivatives of Trigonometric Functions2 J/ Z3 ~8 I. z, g! n* {
Section 2-7 Derivatives of Inverse Trigonometric F) j' `" |: k$ W4 p( y9 ~
, W- G& ?) h) g! u; Z6 M/ ICHAPTER 3 APPLICATIONS OF DERIVATIVES0 r: F" j! Z2 e
Section 3-1 The Mean Value Theorem and its Applications
' c2 g( ^% O+ G7 p) i( T/ ? `6 Y) }Section 3-2 Increasing and Decreasing Functions i4 p. r9 s5 w) n, d/ ~) J! X# I
Section 3-3 Maximum and Minimum Values
4 ~: D3 s D1 r2 L! _; eSection 3-4 The Max -Min Problems4 d, r, @5 H6 w! t1 @
Section 3-5 Concavity and Points of Inflection
v5 b- L J( S$ oSection 3-6 Asymptotes) m1 G, r6 k# c4 v2 a
Section 3-7 Sketching curve5 K& ^- V1 ]2 q, ?3 G: W0 d8 e
Section 3-8 L' Hopital's Rule' Z' m2 s4 _) c2 Q
Section 3-9 Taylor Series6 d0 o% H5 j3 R |5 {2 N# Z
Section 3-10 Applications In Marginal Analysis: \3 {: ^5 P v3 ]
Section 3-11 Elasticity
7 `$ ~4 n" d/ N4 b4 } ! F: E& H6 H/ u5 w! `' n$ T
CHAPTER 4 THE INDEFINITE INTEGRALS
_/ w5 o% @; R" O+ V) RSection 4-1 Antiderivative and The Indefinite Integrals
& R5 a; r0 y( t) o& `& N5 N! b* KSection 4-2 Integration by Changing Variables" K/ c7 Z2 U9 k! R. d# q
Section 4-3 Integration by Parts
$ v) G+ O! B6 q: r# Z* `/ r l( l1 [Section 4-4 The Trigonometric Integrals
) H+ e! Q/ d( D o/ m. S. |Section 4-5 The Integration by Partial Fractions5 }. S" X7 _, Y5 G
Section 4-6 Trigonometric and Half-Angle Substitution
( w+ t# |, c% ^$ v$ @ 5 k( B) I n+ ^6 l4 U
CHAPTER 5 THE DEFINITE INTEGRALS
1 G. B+ ^5 q/ R$ A. K& YSection 5-1 Areas and the Definition of Definite Integral2 D4 {4 a X- i# J( T
Section 5-2 The Fundamental Theorem of Calculus" `: R1 j( n+ s
Section 5-3 The Approximate Integration
% y c0 K0 `. u& t/ eSection 5-4 The Improper Integrals ! L: P p9 [8 } S/ O2 t$ ^
- O, _* z* S! V& z* }0 u' F
CHAPTER 6 APPLICATIONS OF INTEGRATION/ d$ U g. I' W! e; \+ \% w J
Section 6-1 Areas between Curves1 ?1 B' v- _6 K. `4 a
Section 6-2 Areas in Polar Coordinates
7 p& Q( K+ Q* V* n/ LSection 6-3 Arc Length
! i) q8 f+ K* VSection 6-4 Volumes and The Volumes of Revolution W0 l. A6 n1 L# O9 M
Section 6-5 Area of a Surface of Revolution : D0 g7 t; C/ f9 L
Section 6-6 Centroid of A Plane Region+ l# S' Y5 V7 {/ c6 i0 ^
Section 6-7 Work and The Problems of The Engineering& w( @+ {; P! e( r; ~- r
, z8 }" ~% G7 u, {' Z: i
CHAPTER 7 PARTIAL DERIVATIVES$ ?; u5 v' w( Z$ y$ v4 m& t2 V
Section 7-1 Limits and Continuity% E3 r0 K+ K% j1 S3 N- t
Section 7-2 Partial Derivatives: s/ d1 G& s% ?' C1 a
Section 7-3 The Differentials and Chain Rules* k# n: O/ F: c b2 W( M8 t
Section 7-4 Extrema of Functions of Two Variables& k5 S; B6 a7 U4 O! B( r4 U
Section 7-5 Directional Derivatives, Gradient and Tangent Plane7 X% R! [* |+ Q2 ~2 Z
0 a3 n9 _6 E9 V: S$ PCHAPTER 8 MULTIPLE INTEGRALS. z7 {% Y9 l9 F( ?
Section 8-1 Integrals over a Rectangle3 B* V# O. k& o7 q
Section 8-2 Integrals over a Region
( \4 o7 }* O! H% QSection 8-3 Three-Dimensional Iterated Integrals
/ V# L4 Q' @$ d" O& m# n3 ?Section 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates
, C& k$ M& X: ~7 P- ~Section 8-5 Applications of Multiple Integrals: E$ S' K4 q }1 H" B
|
|