|
|
欢迎光临丁云龙老师教学网页$ g8 u6 \1 W6 V7 t& c
http://csm01.csu.edu.tw/0166/2007Ting/index.htm: I7 i' x5 }4 X4 m5 ^
1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学& m+ f( R* a2 ?2 O$ W
2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果. I% T5 m! Y8 B% {; h: x
3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅* ?) K* h' g- A& P# i
4. 限于人力、时间等因素,此教学网页暂不设置讨论区' u! d, }9 ]1 K1 R
- U; ~' w1 U5 ~" A5 x) U$ ~
CHAPTER 1 LIMITS OF FUNCTIONS
7 T) ?$ Z& E- n3 FSection 1-1 Limits
" ^% y) w9 R$ t. O# A RSection 1-2 One-Sided Limit
! b& C$ u: U! L2 M/ {; kSection 1-3 Continuity+ w3 p& @2 V) B2 M9 |
Section 1-4 A Limit at Infinity and Infinite Limit( N3 K4 [- q5 N/ |! ]! ]$ i8 C
* _: l( D7 C+ Q4 o- B b0 aCHAPTER 2 DERIVATIVE
) s1 C# J* I p0 x' e3 V; L- b9 ISection 2-1 Definition of Derivative
% Z3 ]0 V4 l9 I! T TSection 2-2 The Rule of Differentiation% o- B1 m+ F Q; R D D
Section 2-3 Chain Rule and Implicit Differentiation) v# t9 ?! e2 H. T) _
Section 2-4 Derivatives of Exponential and Logarithmic F
% g7 h/ ?/ S+ o: z+ [Section 2-5 Numerical Approximate –Differentials
1 p" [- K# \/ W" }Section 2-6 Derivatives of Trigonometric Functions
v: h. S9 H& h# x9 bSection 2-7 Derivatives of Inverse Trigonometric F
, h+ e- P: m/ {. ^; }# m5 X 1 ?1 b+ Q# w9 x; V
CHAPTER 3 APPLICATIONS OF DERIVATIVES' R/ S" Y5 S" T1 I3 i1 R/ I/ M7 u; G
Section 3-1 The Mean Value Theorem and its Applications
5 f6 A% F9 e; B1 JSection 3-2 Increasing and Decreasing Functions/ a4 N$ @* B5 v: t# a: H( G
Section 3-3 Maximum and Minimum Values
3 S9 _# U0 ], USection 3-4 The Max -Min Problems
4 `3 }- d' }+ e% V% H* b0 @Section 3-5 Concavity and Points of Inflection ( Q6 w, I+ U: n* _/ `* f
Section 3-6 Asymptotes
% Z3 {( ?9 X* l% _5 pSection 3-7 Sketching curve
! N+ g! c+ o, C! O0 [* @# LSection 3-8 L' Hopital's Rule
/ G4 f- i& I% Y5 T5 n& kSection 3-9 Taylor Series8 f5 d$ g4 j# a" h2 H# u
Section 3-10 Applications In Marginal Analysis
: ?8 X+ J: p7 OSection 3-11 Elasticity
$ g8 |- r; S Q- x* Y8 L ( S3 V' q3 O) y5 V5 a9 h
CHAPTER 4 THE INDEFINITE INTEGRALS
* ]# r8 F: c, P/ O$ _Section 4-1 Antiderivative and The Indefinite Integrals0 t! C E6 u e8 F, j; g
Section 4-2 Integration by Changing Variables
7 H# X% U9 A* rSection 4-3 Integration by Parts
l5 i1 b8 U# A/ _7 w5 DSection 4-4 The Trigonometric Integrals/ b; v. T2 ~+ P: X/ h6 X
Section 4-5 The Integration by Partial Fractions1 {! n3 u. M6 t- }
Section 4-6 Trigonometric and Half-Angle Substitution
) V! D: S4 N+ a3 R / o- j8 ]& B( ]
CHAPTER 5 THE DEFINITE INTEGRALS
0 L: s0 _! n5 b+ U9 ~) q7 W* ESection 5-1 Areas and the Definition of Definite Integral
8 Y5 J( P% V# M$ WSection 5-2 The Fundamental Theorem of Calculus( Q8 z8 b% L6 U. w/ w; l3 ]
Section 5-3 The Approximate Integration0 k6 i$ z+ f- E% g
Section 5-4 The Improper Integrals
, H) \, F" N) _ 3 [8 W, ~# P) X& o6 @* e
CHAPTER 6 APPLICATIONS OF INTEGRATION6 Z2 p/ Q$ J9 N- F3 A
Section 6-1 Areas between Curves; i ?* M0 }+ ?6 ?# Q4 O n
Section 6-2 Areas in Polar Coordinates
$ v7 p: n0 E, h7 S; B0 QSection 6-3 Arc Length
( p4 q8 t5 U* @& s; M% V# T3 tSection 6-4 Volumes and The Volumes of Revolution
5 ^! D& ^7 C& r9 d: hSection 6-5 Area of a Surface of Revolution ) F) G- f. N+ W, Z8 P/ {+ v
Section 6-6 Centroid of A Plane Region
$ }8 W0 a% y% l: T, JSection 6-7 Work and The Problems of The Engineering
- E4 h) c7 G' C( }- x
7 [* E% o: L+ p7 g" a2 n; SCHAPTER 7 PARTIAL DERIVATIVES8 A0 y9 h6 _, Y3 O" }/ D
Section 7-1 Limits and Continuity7 a4 }/ z. C; |$ i5 F* ^
Section 7-2 Partial Derivatives- e3 H8 p* o3 c! r
Section 7-3 The Differentials and Chain Rules
! z' j; X4 A. W" {9 x/ |4 z* E4 `Section 7-4 Extrema of Functions of Two Variables
! A+ l1 E' V# F$ [. x4 R, d/ O/ pSection 7-5 Directional Derivatives, Gradient and Tangent Plane
* S& D/ g. U6 K4 m4 ~0 R ) [- `( B8 Q2 n5 G- ^* q2 E- T7 D
CHAPTER 8 MULTIPLE INTEGRALS* ]( x( h. u. i3 ]4 r$ w9 o
Section 8-1 Integrals over a Rectangle4 D) Y' t+ Y( L% g1 L3 b& V( |
Section 8-2 Integrals over a Region3 X5 ?* u4 f1 Q8 B
Section 8-3 Three-Dimensional Iterated Integrals- C8 E P4 H* X' x) S. a; o
Section 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates0 h1 S+ d8 P' E$ ^$ _; Z
Section 8-5 Applications of Multiple Integrals* h E" r/ d5 U" F
|
|