|
|
欢迎光临丁云龙老师教学网页
0 C, l2 u5 \( H8 C& _3 Bhttp://csm01.csu.edu.tw/0166/2007Ting/index.htm
4 T8 A0 |2 \! m! c1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学/ ~( H* S/ J8 W7 {2 p1 |) i
2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果
- F# p! A* h3 t- `( ]% q3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅% G6 J7 R' D2 V% l0 ^+ x: R1 f. U
4. 限于人力、时间等因素,此教学网页暂不设置讨论区6 M/ _" L( r' z" d+ E' b; x- p
5 H, t7 a) ]3 D$ OCHAPTER 1 LIMITS OF FUNCTIONS
# w5 a- ~% ~: {8 X3 KSection 1-1 Limits
$ t3 v9 w! Q" e0 V. \Section 1-2 One-Sided Limit
& O) ]4 Y2 g( d; u' e# T) ZSection 1-3 Continuity
& F/ F; ^) R$ mSection 1-4 A Limit at Infinity and Infinite Limit2 Z( @$ r. z9 d
7 u+ Z z6 N0 D+ bCHAPTER 2 DERIVATIVE
8 C, w- u" d% \9 M2 DSection 2-1 Definition of Derivative
. |# j' o! K8 R$ R9 K% `Section 2-2 The Rule of Differentiation
; M' J: L) u4 L, x; {4 CSection 2-3 Chain Rule and Implicit Differentiation
( o! l% q, a# t! B" z( |, {Section 2-4 Derivatives of Exponential and Logarithmic F 8 l- p- t/ X! U
Section 2-5 Numerical Approximate –Differentials& ?( o# C8 _- @; n# c8 |$ z2 K* D
Section 2-6 Derivatives of Trigonometric Functions8 ^6 u z* U. c( ~" G
Section 2-7 Derivatives of Inverse Trigonometric F
) K3 G# C, a. V) V- b7 w1 R 9 N3 L2 f; m& l: T! Y Q
CHAPTER 3 APPLICATIONS OF DERIVATIVES* D# a: R' P' r0 G
Section 3-1 The Mean Value Theorem and its Applications
9 Q8 b2 w! ^6 |# I/ ^3 ^- r- vSection 3-2 Increasing and Decreasing Functions) S7 Q. G2 j6 N. V, D4 C
Section 3-3 Maximum and Minimum Values! } T \: V! f! w7 o
Section 3-4 The Max -Min Problems
5 u" c% [) I( g8 `2 @5 H6 \Section 3-5 Concavity and Points of Inflection
) L% |8 P& q0 {9 qSection 3-6 Asymptotes3 n) a' ~3 s2 t6 l( P) ?; ^
Section 3-7 Sketching curve {+ t! B7 U, w: L. z: Z
Section 3-8 L' Hopital's Rule7 L; a2 f3 B' g; m6 E
Section 3-9 Taylor Series3 z3 s- i0 y% |6 a. s, e
Section 3-10 Applications In Marginal Analysis( X! i! t2 D7 h! _ J
Section 3-11 Elasticity* c* G. ?- Y q5 I* Y
2 ]+ H( I& v6 M* Z# n
CHAPTER 4 THE INDEFINITE INTEGRALS
: s9 d; W2 n4 g, T1 _ fSection 4-1 Antiderivative and The Indefinite Integrals2 w# j# ` @$ Y1 `
Section 4-2 Integration by Changing Variables; A$ D% R) P9 P( E( D0 h
Section 4-3 Integration by Parts
0 D1 i: B. H aSection 4-4 The Trigonometric Integrals, _/ P2 E. P. h# y- B% h6 K4 f
Section 4-5 The Integration by Partial Fractions. a; t3 O6 @; @. [4 o6 T
Section 4-6 Trigonometric and Half-Angle Substitution ^- h6 o' y3 }1 \ c+ R: g
5 P" D2 B2 Z2 U7 ?! J2 z& F
CHAPTER 5 THE DEFINITE INTEGRALS+ Q: X3 l) e u; N6 d: [- n
Section 5-1 Areas and the Definition of Definite Integral
; M! Z* N" d6 @; S, Y/ Q* l+ CSection 5-2 The Fundamental Theorem of Calculus
& s4 R: k/ ^- V6 KSection 5-3 The Approximate Integration
6 X1 S; r/ o* ?2 W- Q- r$ R: T9 bSection 5-4 The Improper Integrals 3 g1 E% O9 _& p' I
: A3 l X3 e8 `1 X
CHAPTER 6 APPLICATIONS OF INTEGRATION
8 X# e d' Z7 V0 v6 d- e% WSection 6-1 Areas between Curves8 A0 [* t! @" g$ h# ^( e( |
Section 6-2 Areas in Polar Coordinates
( d: F0 q) g- ]0 T: i* u' XSection 6-3 Arc Length
. p% S; y7 x4 z" X% ~. ?$ r& n3 _/ wSection 6-4 Volumes and The Volumes of Revolution% Q( |/ h3 Y# n5 z+ s
Section 6-5 Area of a Surface of Revolution
0 n* W" @; O0 ^, P; ^8 V& n' USection 6-6 Centroid of A Plane Region
. z) y$ P6 V; W( C+ ]Section 6-7 Work and The Problems of The Engineering' c- m7 R% X5 D k
* B( _: I/ R+ q8 ~; g7 ~! ^ D3 H
CHAPTER 7 PARTIAL DERIVATIVES! s5 j: X$ w% Q: p0 ~ [. s+ q
Section 7-1 Limits and Continuity
8 _% r7 u3 a$ G; C% y# w6 C& _Section 7-2 Partial Derivatives
0 l) ^9 L, S I* LSection 7-3 The Differentials and Chain Rules
3 D6 Y% z& P. F$ o' X+ FSection 7-4 Extrema of Functions of Two Variables
: w6 g0 I/ D* G/ c3 n+ U: MSection 7-5 Directional Derivatives, Gradient and Tangent Plane
0 w* [" ^3 l1 V9 L( w
: H/ F5 k6 U( mCHAPTER 8 MULTIPLE INTEGRALS
7 P; B( k' @8 V5 e, y& o0 t8 ASection 8-1 Integrals over a Rectangle, _2 @1 \9 z: B" [& Q1 t. l5 {
Section 8-2 Integrals over a Region
* H% n! \7 i& N y% D% R# }Section 8-3 Three-Dimensional Iterated Integrals
9 P) N7 L' e$ }8 k, G; nSection 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates0 n3 J3 h9 V3 `1 [8 J& x
Section 8-5 Applications of Multiple Integrals i, \4 j4 Y* F0 t' L6 k |
|
|