知道美河 | 上传资料 | VIP申请 | 精品课程 | 资料搜索 | 问题反馈 | 会员手册 | 积分消费 | 积分充值 | 帐号保护
美河学习学习在线赞助VIP

美河学习在线(主站) eimhe.com

用户名  找回密码
 建立账号
查看: 9499|回复: 4

[台湾名师丁云龙][Calculus][放式课程][without charge]

[复制链接]
发表于 2008-11-30 02:38:09 | 显示全部楼层 |阅读模式
欢迎光临丁云龙老师教学网页
5 }7 |  I) P  g  r& a) _7 X) ]http://csm01.csu.edu.tw/0166/2007Ting/index.htm
2 `& L* p  k0 w( }% y6 i  p/ X  o. |1.  此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学
) y) o" [" c5 N9 M$ }3 ]/ a3 h2.  这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果
$ f+ T8 g7 j- Z0 r4 B3.  此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
0 M7 f3 s1 c# ^3 _4 _) {) R. _- x4.  限于人力、时间等因素,此教学网页暂不设置讨论区
2 U9 L  D/ b* c) d4 N6 ~) v6 V2 v" Z) l. u, f) J. F! ~
CHAPTER 1  LIMITS OF FUNCTIONS8 F  o% S: M0 q, ?
Section 1-1     Limits8 a* ^0 ]  `/ k
Section 1-2     One-Sided Limit7 I' i  W! f, l5 S
Section 1-3     Continuity$ _  z' \) V, W& n1 T$ ^
Section 1-4     A Limit at Infinity and Infinite Limit
- L* l' B% x8 g& l6 I8 g6 u2 h& W , [3 v) i3 u  Z. T
CHAPTER 2  DERIVATIVE
2 h$ V0 Y) i5 x4 H: VSection 2-1    Definition of Derivative
( z" S* ]! Y! `+ j9 {3 sSection 2-2    The Rule of Differentiation, n2 g. o6 a: U% n! i' |4 x2 B
Section 2-3    Chain Rule and Implicit Differentiation
) F' r$ g! V# G/ R2 v. n0 J1 rSection 2-4    Derivatives of Exponential and Logarithmic F
9 E. R' R2 y+ [0 C- TSection 2-5    Numerical Approximate –Differentials
/ V' e+ |. s& }) aSection 2-6    Derivatives of Trigonometric Functions  i3 E+ [# I' U: c3 a
Section 2-7    Derivatives of Inverse Trigonometric F1 O0 X5 F; x/ L& i
( [! k, A4 Q1 \& Q" p) l
CHAPTER 3  APPLICATIONS OF DERIVATIVES
  L3 w! }' c9 i1 f3 @Section 3-1    The Mean Value Theorem and its Applications9 [. i/ y/ @# f8 `# t
Section 3-2    Increasing and Decreasing Functions
0 Y$ V# r4 H7 s( QSection 3-3    Maximum and Minimum Values  R) G/ r6 [* C2 L+ l/ c. t
Section 3-4    The Max -Min Problems
8 N6 R, X# t9 s4 s& mSection 3-5    Concavity and Points of Inflection # v2 M# H0 g8 z( ?; S2 s) f6 T1 M
Section 3-6    Asymptotes
1 o2 T( W& d7 |5 L8 USection 3-7    Sketching curve6 `8 D# M3 Z! m: U- Q
Section 3-8    L' Hopital's Rule! F0 I2 l* G/ A9 |
Section 3-9    Taylor Series
, e$ z/ {, I5 r! i7 NSection 3-10  Applications In Marginal Analysis
4 ~: X$ L) N. h7 d$ }/ lSection 3-11  Elasticity9 Q9 T: l, J7 H2 l
 ; a9 H9 O+ q, M* \. O: N
CHAPTER 4    THE INDEFINITE INTEGRALS
1 N) J- x, Z  D) ^7 r3 R; k7 ISection 4-1     Antiderivative and The Indefinite Integrals  I. a2 k" r/ w. n! [4 @5 p
Section 4-2     Integration by Changing Variables0 v, b5 m* i, R, f6 e) g2 d
Section 4-3     Integration by Parts
6 g0 y9 G; F, _Section 4-4     The Trigonometric Integrals9 D1 T. p$ t- n4 c3 H) K, C
Section 4-5     The Integration by Partial Fractions
* G  y9 k, Z" H  ESection 4-6     Trigonometric and Half-Angle Substitution! I6 |, l6 ?5 I; F+ H
 
( Y8 t& ~0 D+ B2 bCHAPTER 5    THE DEFINITE INTEGRALS$ ]" @( j  r; C' Q0 U) `- u- u
Section 5-1    Areas and the Definition of Definite Integral' `: Y' i& T. E' z
Section 5-2    The Fundamental Theorem of Calculus$ @2 r7 U2 J: C
Section 5-3    The Approximate Integration5 U+ @0 o" D1 m$ m6 [9 W
Section 5-4    The Improper Integrals
/ v1 q. X3 R3 _1 j+ Y* a3 x
! J/ h, b/ V+ ?* e* \" g. g9 ZCHAPTER 6    APPLICATIONS OF INTEGRATION
: W  j; X0 P1 {! v) B. TSection 6-1    Areas between Curves8 q6 u* O$ u3 T; ^
Section 6-2    Areas in Polar Coordinates" s* X4 l$ e! W" [
Section 6-3    Arc Length  ^7 C0 ^0 g' {- x* L* _
Section 6-4    Volumes and The Volumes of Revolution5 l& C' ?' w( X) z- S9 B
Section 6-5    Area of a Surface of Revolution
$ \  N' P4 m# Q& YSection 6-6    Centroid of A Plane Region8 G! E" Y$ x$ e/ c, o! ]
Section 6-7    Work and The Problems of The Engineering
* D$ {! j- P9 c+ x0 u( H 3 f, L" v; }* p7 }! I( T' q+ y( Y
CHAPTER 7     PARTIAL DERIVATIVES
' h% j9 k; T8 f- ?( D* y3 BSection 7-1     Limits and Continuity* p: M* {" ^* n$ Q" S( `: h0 m
Section 7-2     Partial Derivatives6 Q; X4 s5 N( I. A
Section 7-3     The Differentials and Chain Rules
) g9 W+ W7 q: q% RSection 7-4     Extrema of Functions of Two Variables
, L- U3 y: O5 l& A/ O2 aSection 7-5     Directional Derivatives, Gradient and Tangent Plane, }7 {6 [# y& k
 
+ z2 |1 y' v; sCHAPTER 8      MULTIPLE INTEGRALS. n% `4 F$ b5 c3 m/ f0 \
Section 8-1     Integrals over a Rectangle
3 M% C' {& A' _) [Section 8-2     Integrals over a Region, ]2 t5 o& K' q) B+ j& Q) D
Section 8-3     Three-Dimensional Iterated Integrals/ Y. {" K" l0 a% M
Section 8-4     Multiple Integration in Polar, Cylindrical and  Spherical Coordinates
$ p% O9 c3 |% {2 @2 b8 l, W8 sSection 8-5     Applications of Multiple Integrals
' l& H! @" e1 v/ L- n; z& L 
发表于 2009-6-15 20:22:37 | 显示全部楼层
不错不错什么东西都能找到,哈哈.谢了楼主.
发表于 2009-7-7 14:09:33 | 显示全部楼层
very good!
发表于 2009-7-7 16:15:40 | 显示全部楼层
发表于 2009-7-7 16:16:04 | 显示全部楼层
您需要登录后才可以回帖 登录 | 建立账号

本版积分规则

 
QQ在线咨询

QQ|小黑屋|手机版|Archiver|美河学习在线 ( 浙网备33020302000026号 )

GMT+8, 2025-7-13 23:44

Powered by Discuz!

© 2001-2025 eimhe.com.

快速回复 返回顶部 返回列表