知道美河 | 上传资料 | VIP申请 | 精品课程 | 资料搜索 | 问题反馈 | 会员手册 | 积分消费 | 积分充值 | 帐号保护
美河学习学习在线赞助VIP

美河学习在线(主站) eimhe.com

 找回密码
 建立账号
查看: 10391|回复: 4

[台湾名师丁云龙][Calculus][放式课程][without charge]

[复制链接]
发表于 2008-11-30 02:38:09 | 显示全部楼层 |阅读模式
欢迎光临丁云龙老师教学网页
$ M- n' n1 t) D* B2 [1 Qhttp://csm01.csu.edu.tw/0166/2007Ting/index.htm; L' ]7 f; z& y! V
1.  此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学( s1 C3 z- b0 m6 W
2.  这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果
$ D' d! u! D* M) A' m3.  此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
+ N5 Q0 Y* S# V! h+ g! p% {) f4.  限于人力、时间等因素,此教学网页暂不设置讨论区
2 d5 e7 u" x, P2 b# K2 g- ?( H  N+ U4 r: P4 L
CHAPTER 1  LIMITS OF FUNCTIONS
, |, l+ B4 v9 uSection 1-1     Limits
4 l3 X8 {* ?, N: |Section 1-2     One-Sided Limit
7 Z1 D6 F* ^/ {5 ]0 iSection 1-3     Continuity# P2 Z5 B  p9 V2 w) o
Section 1-4     A Limit at Infinity and Infinite Limit# X( {' J" n9 w( F- t/ d  e, k9 `
 ' i# }' p4 m5 V0 Y, u5 T
CHAPTER 2  DERIVATIVE: b4 b) r; l* {* x4 A
Section 2-1    Definition of Derivative
4 d' A% m' o& D' YSection 2-2    The Rule of Differentiation6 u2 ?$ n; K. h- ^( I) o
Section 2-3    Chain Rule and Implicit Differentiation6 t" u! Z1 ^& L7 Q& V. Q- B8 b
Section 2-4    Derivatives of Exponential and Logarithmic F 8 m+ B% h& l- H+ B1 w0 p
Section 2-5    Numerical Approximate –Differentials
  {. ?0 U1 V( [Section 2-6    Derivatives of Trigonometric Functions
' P  v1 b" P  p+ U- V- CSection 2-7    Derivatives of Inverse Trigonometric F6 T; @. x  s6 ^: N4 c
+ o3 N, m, u" ]3 b$ s0 G8 p3 s5 [
CHAPTER 3  APPLICATIONS OF DERIVATIVES
3 P+ b) I: e7 h$ K( mSection 3-1    The Mean Value Theorem and its Applications& T8 O. d) d/ W7 i! B9 Y" h
Section 3-2    Increasing and Decreasing Functions$ ^+ Q2 k& J# A- z# h
Section 3-3    Maximum and Minimum Values
, c" u+ n. {: x' L4 e# y! lSection 3-4    The Max -Min Problems
4 O% |8 `- j- B6 ~1 \9 ISection 3-5    Concavity and Points of Inflection   U+ Y/ C: n( Q5 ?" t
Section 3-6    Asymptotes) O$ \. l: j' Q- o3 G% z
Section 3-7    Sketching curve
. C3 ~- {" S9 b, y% USection 3-8    L' Hopital's Rule% ?' R" [; G! L* b. g' l
Section 3-9    Taylor Series( `% T0 k4 @1 R/ V- G# \# |/ ]
Section 3-10  Applications In Marginal Analysis
$ S/ e# @. h: D* ]! d* V6 n2 HSection 3-11  Elasticity9 d0 ^/ m0 e) `! v/ G; T4 u
 5 X6 Q! I& Q- \* f1 F9 g7 s) ]2 t& f
CHAPTER 4    THE INDEFINITE INTEGRALS  Q/ M3 s3 h- R: }( n1 s
Section 4-1     Antiderivative and The Indefinite Integrals
% p6 U' M0 f* t9 T( r+ [/ e, ~Section 4-2     Integration by Changing Variables; j2 Y2 |% R# }  y( R0 ^$ o& K
Section 4-3     Integration by Parts
, l0 n2 A! F$ dSection 4-4     The Trigonometric Integrals
) X; E1 S- ?* S' iSection 4-5     The Integration by Partial Fractions
4 a/ U9 O8 w6 q% s' pSection 4-6     Trigonometric and Half-Angle Substitution8 Z  A) M$ T4 _9 C7 g( T( @
 
, n: U2 S: _/ j7 d, P9 e. {CHAPTER 5    THE DEFINITE INTEGRALS
4 e$ h+ ^, H* ~% \: xSection 5-1    Areas and the Definition of Definite Integral- q* h- E; V/ v
Section 5-2    The Fundamental Theorem of Calculus
( U$ j$ ~1 a* g& ~2 `" ?- iSection 5-3    The Approximate Integration$ ~' H( z$ [5 ]- ]  R" [! i9 V
Section 5-4    The Improper Integrals 4 U9 |; _4 c- C/ ^
; c. p, }2 l6 h8 Y7 i5 e- `6 }
CHAPTER 6    APPLICATIONS OF INTEGRATION. [9 k9 J+ J5 d
Section 6-1    Areas between Curves
+ b4 g2 I' `: r" V. kSection 6-2    Areas in Polar Coordinates7 J5 @& ?9 s, R( K# ~& J
Section 6-3    Arc Length$ i2 T  D5 Z" `1 g
Section 6-4    Volumes and The Volumes of Revolution
& x( I6 M0 w5 j/ W( b, JSection 6-5    Area of a Surface of Revolution 8 g0 ]! |  d" O7 Z$ o
Section 6-6    Centroid of A Plane Region
* z5 L4 j5 T' a% S1 sSection 6-7    Work and The Problems of The Engineering. r3 L' |1 i& |2 ]
 
! \2 @  [# e& g7 uCHAPTER 7     PARTIAL DERIVATIVES  t5 N( i. ]4 u  g7 A% a
Section 7-1     Limits and Continuity7 n2 f" I8 t9 ]4 W6 u( C* z. G
Section 7-2     Partial Derivatives
8 K5 D9 i/ {! j0 A2 X, e$ @1 jSection 7-3     The Differentials and Chain Rules
: ~$ G# b5 N% a/ c$ K1 W7 YSection 7-4     Extrema of Functions of Two Variables
. a0 I8 [# g9 w* C& SSection 7-5     Directional Derivatives, Gradient and Tangent Plane
; P# t0 T. O) l: r% i 
; ^# c9 |* e7 W3 K7 n7 U$ XCHAPTER 8      MULTIPLE INTEGRALS  g: D5 f9 }% B* C) i* w
Section 8-1     Integrals over a Rectangle
% y3 H# ^/ W9 y4 Q. e3 V  s2 Z. BSection 8-2     Integrals over a Region! f1 K8 z: P7 U) z3 ^
Section 8-3     Three-Dimensional Iterated Integrals
' D0 t! w4 ^8 }, g/ a! U9 u/ cSection 8-4     Multiple Integration in Polar, Cylindrical and  Spherical Coordinates: D* c' N. `8 t% l" k0 k
Section 8-5     Applications of Multiple Integrals
& o9 D, K0 T+ f+ l 
发表于 2009-6-15 20:22:37 | 显示全部楼层
不错不错什么东西都能找到,哈哈.谢了楼主.
发表于 2009-7-7 14:09:33 | 显示全部楼层
very good!
发表于 2009-7-7 16:15:40 | 显示全部楼层
发表于 2009-7-7 16:16:04 | 显示全部楼层
您需要登录后才可以回帖 登录 | 建立账号

本版积分规则

 
QQ在线咨询

QQ|小黑屋|手机版|Archiver|美河学习在线 ( 浙网备33020302000026号 )

GMT+8, 2025-10-20 00:27

Powered by Discuz! X3.4

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表