|
欢迎光临丁云龙老师教学网页
$ M- n' n1 t) D* B2 [1 Qhttp://csm01.csu.edu.tw/0166/2007Ting/index.htm; L' ]7 f; z& y! V
1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学( s1 C3 z- b0 m6 W
2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果
$ D' d! u! D* M) A' m3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
+ N5 Q0 Y* S# V! h+ g! p% {) f4. 限于人力、时间等因素,此教学网页暂不设置讨论区
2 d5 e7 u" x, P2 b# K2 g- ?( H N+ U4 r: P4 L
CHAPTER 1 LIMITS OF FUNCTIONS
, |, l+ B4 v9 uSection 1-1 Limits
4 l3 X8 {* ?, N: |Section 1-2 One-Sided Limit
7 Z1 D6 F* ^/ {5 ]0 iSection 1-3 Continuity# P2 Z5 B p9 V2 w) o
Section 1-4 A Limit at Infinity and Infinite Limit# X( {' J" n9 w( F- t/ d e, k9 `
' i# }' p4 m5 V0 Y, u5 T
CHAPTER 2 DERIVATIVE: b4 b) r; l* {* x4 A
Section 2-1 Definition of Derivative
4 d' A% m' o& D' YSection 2-2 The Rule of Differentiation6 u2 ?$ n; K. h- ^( I) o
Section 2-3 Chain Rule and Implicit Differentiation6 t" u! Z1 ^& L7 Q& V. Q- B8 b
Section 2-4 Derivatives of Exponential and Logarithmic F 8 m+ B% h& l- H+ B1 w0 p
Section 2-5 Numerical Approximate –Differentials
{. ?0 U1 V( [Section 2-6 Derivatives of Trigonometric Functions
' P v1 b" P p+ U- V- CSection 2-7 Derivatives of Inverse Trigonometric F6 T; @. x s6 ^: N4 c
+ o3 N, m, u" ]3 b$ s0 G8 p3 s5 [
CHAPTER 3 APPLICATIONS OF DERIVATIVES
3 P+ b) I: e7 h$ K( mSection 3-1 The Mean Value Theorem and its Applications& T8 O. d) d/ W7 i! B9 Y" h
Section 3-2 Increasing and Decreasing Functions$ ^+ Q2 k& J# A- z# h
Section 3-3 Maximum and Minimum Values
, c" u+ n. {: x' L4 e# y! lSection 3-4 The Max -Min Problems
4 O% |8 `- j- B6 ~1 \9 ISection 3-5 Concavity and Points of Inflection U+ Y/ C: n( Q5 ?" t
Section 3-6 Asymptotes) O$ \. l: j' Q- o3 G% z
Section 3-7 Sketching curve
. C3 ~- {" S9 b, y% USection 3-8 L' Hopital's Rule% ?' R" [; G! L* b. g' l
Section 3-9 Taylor Series( `% T0 k4 @1 R/ V- G# \# |/ ]
Section 3-10 Applications In Marginal Analysis
$ S/ e# @. h: D* ]! d* V6 n2 HSection 3-11 Elasticity9 d0 ^/ m0 e) `! v/ G; T4 u
5 X6 Q! I& Q- \* f1 F9 g7 s) ]2 t& f
CHAPTER 4 THE INDEFINITE INTEGRALS Q/ M3 s3 h- R: }( n1 s
Section 4-1 Antiderivative and The Indefinite Integrals
% p6 U' M0 f* t9 T( r+ [/ e, ~Section 4-2 Integration by Changing Variables; j2 Y2 |% R# } y( R0 ^$ o& K
Section 4-3 Integration by Parts
, l0 n2 A! F$ dSection 4-4 The Trigonometric Integrals
) X; E1 S- ?* S' iSection 4-5 The Integration by Partial Fractions
4 a/ U9 O8 w6 q% s' pSection 4-6 Trigonometric and Half-Angle Substitution8 Z A) M$ T4 _9 C7 g( T( @
, n: U2 S: _/ j7 d, P9 e. {CHAPTER 5 THE DEFINITE INTEGRALS
4 e$ h+ ^, H* ~% \: xSection 5-1 Areas and the Definition of Definite Integral- q* h- E; V/ v
Section 5-2 The Fundamental Theorem of Calculus
( U$ j$ ~1 a* g& ~2 `" ?- iSection 5-3 The Approximate Integration$ ~' H( z$ [5 ]- ] R" [! i9 V
Section 5-4 The Improper Integrals 4 U9 |; _4 c- C/ ^
; c. p, }2 l6 h8 Y7 i5 e- `6 }
CHAPTER 6 APPLICATIONS OF INTEGRATION. [9 k9 J+ J5 d
Section 6-1 Areas between Curves
+ b4 g2 I' `: r" V. kSection 6-2 Areas in Polar Coordinates7 J5 @& ?9 s, R( K# ~& J
Section 6-3 Arc Length$ i2 T D5 Z" `1 g
Section 6-4 Volumes and The Volumes of Revolution
& x( I6 M0 w5 j/ W( b, JSection 6-5 Area of a Surface of Revolution 8 g0 ]! | d" O7 Z$ o
Section 6-6 Centroid of A Plane Region
* z5 L4 j5 T' a% S1 sSection 6-7 Work and The Problems of The Engineering. r3 L' |1 i& |2 ]
! \2 @ [# e& g7 uCHAPTER 7 PARTIAL DERIVATIVES t5 N( i. ]4 u g7 A% a
Section 7-1 Limits and Continuity7 n2 f" I8 t9 ]4 W6 u( C* z. G
Section 7-2 Partial Derivatives
8 K5 D9 i/ {! j0 A2 X, e$ @1 jSection 7-3 The Differentials and Chain Rules
: ~$ G# b5 N% a/ c$ K1 W7 YSection 7-4 Extrema of Functions of Two Variables
. a0 I8 [# g9 w* C& SSection 7-5 Directional Derivatives, Gradient and Tangent Plane
; P# t0 T. O) l: r% i
; ^# c9 |* e7 W3 K7 n7 U$ XCHAPTER 8 MULTIPLE INTEGRALS g: D5 f9 }% B* C) i* w
Section 8-1 Integrals over a Rectangle
% y3 H# ^/ W9 y4 Q. e3 V s2 Z. BSection 8-2 Integrals over a Region! f1 K8 z: P7 U) z3 ^
Section 8-3 Three-Dimensional Iterated Integrals
' D0 t! w4 ^8 }, g/ a! U9 u/ cSection 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates: D* c' N. `8 t% l" k0 k
Section 8-5 Applications of Multiple Integrals
& o9 D, K0 T+ f+ l |
|