|
|
欢迎光临丁云龙老师教学网页0 }1 Z# X& _7 e t6 E6 G p) ~; ?9 J2 Q
http://csm01.csu.edu.tw/0166/2007Ting/index.htm
! D9 x' A/ p& T& u1. 此教学课程模拟麻省理工开放式课程, 加入影音讲解, 内容针对初学入门者, 偏重运算, 尤其适合技职体系的同学
( i8 @$ M L) R5 ]8 f2. 这是一个开放式影音课程, 可配合学校教学, 达到预习及复习的效果* `6 x/ R% X$ B- t
3. 此教学课程以四技大一微积分为主, 高中数学 及国高中衔接课程为辅
3 Z+ y" b) w7 l& w% f/ Q8 D* K4. 限于人力、时间等因素,此教学网页暂不设置讨论区
3 i! }% T8 q- |! a+ ]1 u
Q& X$ U$ Q7 {: g, cCHAPTER 1 LIMITS OF FUNCTIONS/ z: z3 b4 V8 }" Y
Section 1-1 Limits# U! D; t/ p! Y: Z2 _5 \ C
Section 1-2 One-Sided Limit' i( e4 m% ^" m) o0 d c5 F& J
Section 1-3 Continuity0 |* m- l4 L! g! ~( `9 d; a
Section 1-4 A Limit at Infinity and Infinite Limit% g3 F5 b9 g" y
n+ D, C" O3 f1 e$ x, @5 }; T3 fCHAPTER 2 DERIVATIVE
0 u; K) z5 Z' G: @; OSection 2-1 Definition of Derivative: W7 r- w! m( k
Section 2-2 The Rule of Differentiation5 J; E5 d" Z7 ]1 N$ U w) u
Section 2-3 Chain Rule and Implicit Differentiation
$ t; l" z \0 e, d* ^/ nSection 2-4 Derivatives of Exponential and Logarithmic F
1 ?0 P7 A3 U' }2 Y5 FSection 2-5 Numerical Approximate –Differentials9 P% J7 N" r: w6 s
Section 2-6 Derivatives of Trigonometric Functions I, g1 {/ J: C2 U" D7 l+ L
Section 2-7 Derivatives of Inverse Trigonometric F
. [# u3 Z& G: r2 E. W
9 ?% Y- t6 I: [* pCHAPTER 3 APPLICATIONS OF DERIVATIVES
! X; l( m% W$ c: |2 ]4 lSection 3-1 The Mean Value Theorem and its Applications
* E B5 ?, [3 i6 ~' K5 V! `4 GSection 3-2 Increasing and Decreasing Functions
! `- m8 e, L% b4 v2 nSection 3-3 Maximum and Minimum Values
3 b8 R( R. d2 m0 d' QSection 3-4 The Max -Min Problems- O) _; |: D4 c# l y8 E
Section 3-5 Concavity and Points of Inflection
7 m4 a7 m' s0 h/ N; PSection 3-6 Asymptotes
1 V. u0 p. |7 TSection 3-7 Sketching curve/ a) q5 X* E Z8 i' k
Section 3-8 L' Hopital's Rule: H0 m2 \$ Y) j" c1 @
Section 3-9 Taylor Series
! m" ?) G' v% BSection 3-10 Applications In Marginal Analysis0 Z7 F/ c0 t. |
Section 3-11 Elasticity$ F1 V3 x( A5 r) l: C/ j1 a! y
7 D# O6 `, z6 }1 z
CHAPTER 4 THE INDEFINITE INTEGRALS
4 G- c* b' T3 K0 ?. |! u/ h8 J! [2 R: nSection 4-1 Antiderivative and The Indefinite Integrals
3 _% R- u1 ~* H! m" `; V G' tSection 4-2 Integration by Changing Variables
4 s. J4 e5 a4 u* n! gSection 4-3 Integration by Parts$ y5 Y0 r' p1 o8 S" R, o$ H
Section 4-4 The Trigonometric Integrals
( D5 H/ i6 t# F/ ZSection 4-5 The Integration by Partial Fractions
' S2 w* {5 y( g' E% [! sSection 4-6 Trigonometric and Half-Angle Substitution6 }$ ]9 I4 z0 b! K Z0 r- U0 p
9 c3 v* m3 Q0 N8 Q5 B
CHAPTER 5 THE DEFINITE INTEGRALS
! U3 K. t% r; SSection 5-1 Areas and the Definition of Definite Integral
H* o9 u& l# S6 p% e, ^Section 5-2 The Fundamental Theorem of Calculus
* E/ Z3 X; b0 h" ISection 5-3 The Approximate Integration
' }0 y" \8 C5 K* `Section 5-4 The Improper Integrals
/ x$ [1 C2 E% Y6 v& r! |! X 0 c7 N1 ^5 v- h9 v7 \5 `
CHAPTER 6 APPLICATIONS OF INTEGRATION
. C" g! E6 R0 V" p) RSection 6-1 Areas between Curves4 F, Y# I$ E& D
Section 6-2 Areas in Polar Coordinates& T5 l4 r5 A5 ^+ f4 x
Section 6-3 Arc Length- N4 S- T4 y1 P3 C8 B# V q
Section 6-4 Volumes and The Volumes of Revolution: d, R( o! L4 M8 {( w( Q. ^
Section 6-5 Area of a Surface of Revolution
- T4 t) s9 R8 d4 X1 i oSection 6-6 Centroid of A Plane Region7 @; N( k2 T1 E0 t0 o
Section 6-7 Work and The Problems of The Engineering1 x5 s0 U* p: z P- k3 B7 w9 T
: z" W9 B+ v3 e3 a) }' C) I/ y; j, tCHAPTER 7 PARTIAL DERIVATIVES
% k, J- T& Y3 C& x7 tSection 7-1 Limits and Continuity
0 O: ~5 A3 t% v* ]6 ASection 7-2 Partial Derivatives( V" n$ c2 T- [! m
Section 7-3 The Differentials and Chain Rules
% O: n* X% U3 \/ m. b" gSection 7-4 Extrema of Functions of Two Variables
* T; s" m2 Z$ K, R1 _9 r" gSection 7-5 Directional Derivatives, Gradient and Tangent Plane
! X m l/ j: V! N* I$ _6 q " s4 [9 Q- T2 D' X/ h
CHAPTER 8 MULTIPLE INTEGRALS
7 Y5 H% g1 p% `Section 8-1 Integrals over a Rectangle R4 Q3 P' x) l* w& N3 ]/ y
Section 8-2 Integrals over a Region
$ w2 d" d' t5 Z1 q. YSection 8-3 Three-Dimensional Iterated Integrals1 E! ~! N3 l) U* v* Q! `7 P$ w7 I
Section 8-4 Multiple Integration in Polar, Cylindrical and Spherical Coordinates
5 D( e% h) x, j! Y+ g/ |' c( ESection 8-5 Applications of Multiple Integrals
2 ?) h' X+ ?2 c& b- U$ [% ~8 ^ f |
|